nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 02 v.42 71-76
串联催化剂催化二氧化碳加氢制芳烃研究进展
基金项目(Foundation): 中国电力建设股份有限公司科技项目经费资助(DJ-HXGG-2023-03)
邮箱(Email): 2285992352@qq.com;
DOI: 10.20075/j.cnki.issn.1003-9384.2025.02.016
中文作者单位:

中电建新能源集团股份有限公司;

摘要(Abstract):

综述了基于串联催化剂催化二氧化碳(CO_2)加氢制芳烃反应体系,阐述了催化反应机理,总结了影响催化反应的重要因素,并对串联催化剂的发展趋势进行了总结展望。

关键词(KeyWords): 二氧化碳加氢;串联催化剂;芳烃;反应机制;反应条件
参考文献

[1] 陈玉,夏声鹏,赵坤,等.生物基呋喃催化热解耦合CO2还原制取芳烃和合成气 [J].新能源进展,2024,12(4):1-7.

[2] 徐婕,史江维,韩信有,等.煤制芳烃技术研究进展 [J].煤炭转化,2024,47(5):106-121.

[3] TIAN H F,HE H HJIAO J P,et al.Tandem catalysts composed of different morphology HZSM-5 and metal oxides for CO2 hydrogenation to aromatics[J].Fuel,2022,314(15):123119.

[4] WANG W H,HE R S,WANG Y,et al.Boosting methanol-mediated CO2 hydrogenation into aromatics by synergistically tailoring oxygen vacancy and acid site properties of multifunctional catalyst[J].Chemistry,2023,29(40):e202301135.

[5] WEI J,YAO R W,GE Q J,et al.Precisely regulating Br?nsted acid sites to promote the synthesis of light aromatics via CO2 hydrogenation[J] Applied Catalysis B:Environmental,2021,283:119648.

[6] POROSOFF M D,YAN B H,CHEN J G.Catalytic reduction of CO2 by H2 for synthesis of CO,methanol and hydrocarbons:Challenges and opportunities[J].Energy & Environmental Science,2016,9(1):62-73.

[7] MANSOUR H,IGLESIA E.Mechanistic connections between CO2 and CO hydrogenation on dispersed ruthenium nanoparticles[J].Journal of the American Chemical Society,2021,143(30):11582-11594.

[8] XIN H,LIN L,LI R T,et al.Overturning CO2 hydrogenation selectivity with high activity via reaction-induced strong metal-support interactions[J].Journal of the American Chemical Society,2022,144(11):4874-4882.

[9] 张保连,刘畅,刘苏,等.ZnCr2O4/ZSM-5@Silicalite-1优化CO2一步法加氢制芳烃反应选择性[J].无机化学学报,2023,39(12):2339-2348.

[10] CHENG K,ZHOU W,KANG J C,et al.Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J].Chem,2017,3(2):334-347.

[11] GAMBO Y,ADAMU S,LUCKY R A,et al.Tandem catalysis:A sustainable alternative for direct hydrogenation of CO2 to light olefins[J].Applied Catalysis A:General,2022,641(5):118658.

[12] WANG Wenhang,ZENG Chunyang,TSUBAKI Noritatsu.Recent advancements and perspectives of the CO2 hydrogenation reaction[J].Green Carbon,2023,1(2):133-145.

[13] ZHANG J F,ZHANG M,CHEN S Y,et al.Hydrogenation of CO2 into aromatics over a ZnCrOx-zeolite composite catalyst[J].Chemical Communications,2019,55(7):973-976.

[14] TIAN H F,HE H H,GAO P,et al.Construction of high-performance catalysts for CO2 hydrogenation to aromatics with the assisted of DFT calculations[J].Applied Surface Science,2023,608:155-158.

[15] SHAH D R,NEZAM I,ZHOU W,et al.Isomorphous substitution in ZSM-5 in tandem methanol/zeolite catalysts for the hydrogenation of CO2 to aromatics[J].Energy & Fuels,2024,38(3):2224-2234.

[16] WANG Y,TAN L,TAN M H,et al.Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J].ACS Catalysis,2018,9(2):895-901.

[17] NEZAM I,ZHOU W,SHAH D R,et al.Role of catalyst domain size in the hydrogenation of CO2 to aromatics over ZnZrOx/ZSM-5 Catalysts[J].The Journal of Physical Chemistry C,2023,127(13):6356-6370.

[18] WANG D,XIE Z H,POROSOFF M D,et al.Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics[J].Chem,2021,7(9):2277-2311.

[19] DORNER R W,HARDY D R,WILLIAMS F W,et al.Heterogeneous catalytic CO2 conversion to value-added hydrocarbons[J].Energy & Environmental Science,2010,3(7):884.

[20] LAUDENSCHLEGER Daniel,RULAND Holger,MUHLER Martin.Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al2O3 catalysts[J].Nature Communications,2020,11(1):3898.

[21] 高鹏.CO2加氢制芳烃的金属改性UiO-66/HZSM-5串联催化剂的构筑[D].兰州:西北师范大学,2023.

[22] LIU X L,WANG M H,ZHOU C,et al.Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J].Chemical Communications,2018,54(2):140-143.

[23] WEN C Y,XU X L,SONG X B,et al.Selective CO2 hydrogenation to light aromatics over the Cu-modified Fe-based/ZSM-5 catalyst system[J].Energy & Fuels,2022,37(1):518-528.

[24] XU X L,WEN C Y,JIN K,et al.Chain-like ZSM-5 zeolite coupled with Cu-Fe3O4 for CO2 hydrogenation to light aromatics[J].Journal of Fuel Chemistry and Technology,2022,50(9):1183-1190.

[25] 胡柏睿.Fe-K/a-Al2O3&P/HZSM-5双功能催化剂上CO2加氢制芳烃的研究[D].西安:西北大学,2020.

[26] XU Y B,SHI C M,LIU B,et al.Selective production of aromatics from CO2[J].Catalysis Science & Technology,2019,9(3):593-610.

[27] CHEN C H,SONG G Y,WANG Z H,et al.Insight into the synergistic effect of copper and sodium over metal organic framework-derived Fe-based catalyst for CO2 hydrogenation to aromatics[J].Applied Catalysis B:Environmental,2024,341:123330.

[28] SONG G Y,LI M Z,YAN P K,et al.High conversion to aromatics via CO2-FT over a CO-reduced Cu-Fe2O3 catalyst integrated with HZSM-5[J].ACS Catalysis,2020,10(19):11268-11279.

[29] CUI X,GAO P,LI S G,et al.Selective production of aromatics directly from carbon dioxide hydrogenation[J].ACS Catalysis,2019,9(5):3866-3876.

[30] CHEN C H,LI X,WANG Z H,et al.Insight into the element migration induced tandem cooperation between CuNa-doped Fe based catalyst and Mn-treated HZSM-5 for direct CO2 hydrogenation to aromatics[J].Chemical Engineering Journal,2024,483:149-181.

[31] LOPEZ L M,TIMOSHENKO J,KORDUS D,et al.Role of the oxide support on the structural and chemical evolution of Fe catalysts during the hydrogenation of CO2[J].ACS Catalysis,2021,11(10):6175-6185.

[32] MURCIANO R,SERRA J M,MARTíNEZ A.Direct hydrogenation of CO2 to aromatics via Fischer-Tropsch route over tandem K-Fe/Al2O3+H-ZSM-5 catalysts:Influence of zeolite properties[J].Catalysis Today,2024,427:114404.

[33] ZHU M H,TIAN P F,FORD M E,et al.Nature of reactive oxygen intermediates on copper-promoted iron-chromium oxide catalysts during CO2 activation[J].ACS Catalysis,2020,10(14):7857-7863.

[34] WEI J,GE Q J,YAO R W,et al.Directly converting CO2 into a gasoline fuel[J].Nature Communications,2017,8:15174.

[35] XU Y B,WANG T,SHI C M,et al.Experimental investigation on the two-sided effect of acidic HZSM-5 on the catalytic performance of composite Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolite in the production of aromatics from CO2/H2[J].Industrial & Engineering Chemistry Research,2020,59(18):8581-8591.

[36] MA Z,CAO F H,YANG Y H,et al.Role of the nonstoichiometric Zn-Cr spinel in ZnCrOx/ZSM-5 catalysts for syngas aromatization[J].Fuel,2022,325:124809.

[37] XIN Q,GUO H Y,WANG Y C,et al.Indium-promoted ZnZrOx/nano-ZSM-5 for efficient conversion of CO2 to aromatics with high selectivity[J].Journal of Environmental Chemical Engineering,2022,10(3):108032.

[38] NI Y M,CHEN Z Y,FU Yi,et al.Selective conversion of CO2 and H2 into aromatics[J].Nature Communications,2018,9(1):3457.

[39] TIAN G,LIU X Y,ZHANG C X,et al.Accelerating syngas-to-aromatic conversion via spontaneously monodispersed Fe in ZnCr2O4 spinel[J].Nature Communications,2022,13(1):5567.

[40] BIAN G W,NIU P Y,JIA L T,et al.Alkylation of benzene using CO2 and H2 over ZnZrOx/ZSM-5:the effect of Y doping [J].New Journal of Chemistry,2023,47(2):609-617.

[41] LI Z L,WANG J J,QU Y Z,et al.Highly selective conversion of carbon dioxide to lower olefins[J].ACS Catalysis,2017,7(12):8544-8548.

[42] ARSLAN M T,TIAN G,ALI B,et al.Highly selective conversion of CO2 or CO into precursors for Kerosene-based aviation fuel via an aldol-aromatic mechanism[J].ACS Catalysis,2022,12(3):2023-2033.

[43] TIAN G,LIANG X Y,XIONG H,et al.A perspective of COx conversion to aromatics[J].EES Catalysis,2023,1(5):677-686.

[44] RAMIREZ A,GONG X,CAGLAYAN M,et al.Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis[J].Nature Communications,2021,12(1):5914.

[45] ZHENG S R,HEYDENRYCH H R,JENTYS A,et al.Influence of surface modification on the acid site distribution of HZSM-5[J].Journal of Physical Chemistry B,2002,106(37):9552-9558.

[46] JIAO F,LI J J,PAN X L,et al.Selective conversion of syngas to light olefins[J].Science,2016,351(6277):1065-1068.

[47] TIAN H F,JIAO C X,ZHA F,et al.Tandem catalysts of different crystalline In2O3/sheet HZSM-5 zeolite for CO2 hydrogenation to aromatics[J].Journal of Colloid and Interface Science,2024,653:1225-1235.

[48] LI Z L,QU Y Z,WANG J J,et al.Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J].Joule,2019,3(2):570-583.

[49] WANG T,YANG C G,GAO P,et al.ZnZrOx integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO2 hydrogenation[J].Applied Catalysis B:Environmental,2021,286:119-929.

[50] YANG J H,PAN X L,JIAO F,et al.Direct conversion of syngas to aromatics[J].Chemical Communications,2017,53(81):11146-11149.

[51] TIAN H F,GAO P,YANG X,et al.Reaction mechanisms and catalytic performance of CO2 to aromatics over M(ZnO,Ga2O3,In2O3)-UiO-66 catalysts without zeolite[J].ACS Sustainable Chemistry & Engineering,2023,11(39):14334-14347.

基本信息:

DOI:10.20075/j.cnki.issn.1003-9384.2025.02.016

中图分类号:TQ241;TQ426

引用信息:

[1]刘晓杰,刘峻,王光春等.串联催化剂催化二氧化碳加氢制芳烃研究进展[J].精细石油化工,2025,42(02):71-76.DOI:10.20075/j.cnki.issn.1003-9384.2025.02.016.

基金信息:

中国电力建设股份有限公司科技项目经费资助(DJ-HXGG-2023-03)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文