nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 03 v.42 16-21
海上中低渗油藏高效纳米驱油体系性能评价与矿场试验
基金项目(Foundation): 基金项目:中海油田服务股份有限公司科技项目(YSB22YF009)
邮箱(Email):
DOI: 10.20075/j.cnki.issn.1003-9384.2025.03.004
中文作者单位:

海洋油气高效开发全国重点实验室;天津市海洋石油难动用储量开采重点实验室;中海油田服务股份有限公司油田生产事业部;

摘要(Abstract):

为适应海上中低渗油藏提高采收率的需求,以生物酶、自生活化剂与改性纳米银为主要原料开发了一种新型纳米驱油体系,评价了体系粒径、界面张力性能、润湿性能及驱油效果。结果表明:纳米驱油体系的粒径分布主要在20~60 nm;当纳米驱油体系质量浓度达到100 mg/L时,油水界面张力达到6.7×10-3 mN/m,界面活性良好;纳米驱油体系可以将岩石润湿性从油湿改变成水湿,实现润湿反转;纳米驱油体系具有高波及效果、乳化作用和黏弹性作用。当纳米驱油体系质量浓度达到100 mg/L时,原油采收率在水驱效果上提高17.63%,明显优于表面活性剂与金属纳米流体。现场应用结果表明,纳米驱油技术的降水增油效果优于常规驱油技术,平均日增油量是采用常规驱油剂井的1.8倍,平均含水下降率为2.5倍,累增油量为2.8倍。

关键词(KeyWords): 海上中低渗油藏;多功能;纳米驱油体系;性能评价;提高采收率
参考文献

[1] 于萌,李翔,刘文辉,等.海上高含水油田蠕虫状胶束驱油技术研究与应用[J].石油与天然气化工,2023,52(1):84-90.

[2] 范华波,薛小佳,李楷,等.驱油型表面活性剂压裂液的研发与应用[J].石油与天然气化工,2019,48(1):74-79.

[3] 王宇哲,单五一,李勇,等.国内外纳米颗粒提高采收率技术研究现状[J].化学工程师,2020,34(8):70-72.

[4] 吴鹏,宋考平,张跃,等.聚合物驱油体系高效络合剂研究[J].特种油气藏,2020,27(1):114-120.

[5] LI K X,JING X Q,HE S,et al.Laboratory study displacement efficiency of viscoelastic surfactant solution in enhanced oil recoverys[J].Energ Fuel,2016,30(6):4467-4474.

[6] ZHOU Y,YIN D,CAO R,et al.The mechanism for pore-throat scale emulsion displacing residual oil after water floodings[J].J Pet Sci Eng,2018,163:519-525.

[7] PANG S,PU W,XIE J,et al.Investigation into the properties of water-in-heavy oil emulsion and its role in enhanced oil recovery during water flooding[J].J Pet Sci Eng,2019,177:798-807.

[8] 李原,狄勤丰,华帅,等.纳米流体对储层润湿性反转提高石油采收率研究进展[J].化工进展,2019,38(8):3612-3620.

[9] 耿向飞,丁彬,张玉亮,等.致密储层纳米流度改性剂的微流控模拟评价[J].油田化学,2019,36(2):267-270,276.

[10] KIRTIPRAKASH K,NIKOLOV A D,WASAN D,et al.Dynamic spreading of nanofluids on solids.part I:experimental[J].Langmuir:The ACS Journal of Surfaces and Colloids,2012,28(41):14618-14623.

[11] NAZARI M R,BAHRAMIAN A,FAKHROUEIAN Z,et al.Comparative study of using nanoparticles for enhanced oil recovery:wettability alteration of carbonate rocks[J].Energy & Fuels,2015,29(4):2111-2119.

[12] 丁彬,熊春明,耿向飞,等.致密油纳米流体增渗驱油体系特征及提高采收率机理[J].石油勘探与开发,2020,47(4):756-764.

[13] 李佳,陈明贵,耿向飞,等.低界面张力活性纳米流体的研制与渗吸驱油机理分析[J].油田化学,2021,38(2):284-290.

[14] NAZARI MOGHADDAM R,BAHRAMIAN A,FAKHROUEIAN Z,et al.Comparative study of using nanoparticles for enhanced oil recovery:wettability alteration of carbonate rocks[J].Energy & Fuels,2015,29(4):2111-2119.

[15] CHEN Huijuan,DI Qinfeng,YE Feng,et al.Numerical simulation of drag reduction effects by hydophobic nanoparticles adsorption method in water flooding processes[J].Journal of Natural Gas Science and Engineering,2016,35:1261-1269.

[16] 李玉阳.超低渗油藏用活性纳米流体的制备及渗吸排油应用研究[D].青岛:中国石油大学(华东),2018.

[17] ROGNMO A U,AL-KHAYYAT N,HELDAL S,et al.Performance of silica nanoparticles in CO2 foam for EOR and CCUS at tough reservoir conditions[J].SPE Journal,2019,25(1):406-415.

[18] MOGHADDAM R N,BAHRAMIAN A,FAKHROUEIAN Z,et al.a comparative study of using nanoparticles for enhanced oil recovery:wettability alteration of carbonate rocks[J].Energy & Fuels,2015,29(4):2111-2119.

[19] 王博,邓舒元,冯青,等.生物纳米驱油剂体系的制备与性能评价[J].油田化学,2023:40(4):676-683,703.

[20] DENG S,WAN B,ZHANG H,et al.Degradation and enhanced oil recovery potential of Alcanivorax borkumensis through production of bio-enzyme and bio-surfactant[J].Bioresource Technology,2024,400:130690.

基本信息:

DOI:10.20075/j.cnki.issn.1003-9384.2025.03.004

中图分类号:TE53

引用信息:

[1]李胜胜,冯青,李啸南等.海上中低渗油藏高效纳米驱油体系性能评价与矿场试验[J].精细石油化工,2025,42(03):16-21.DOI:10.20075/j.cnki.issn.1003-9384.2025.03.004.

基金信息:

基金项目:中海油田服务股份有限公司科技项目(YSB22YF009)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文